Abstract

A series of power spectral analyses for a thermal subcritical reactor system driven by a pulsed 14 MeV neutron source was carried out at Kyoto University Critical Assembly (KUCA), to determine the prompt-neutron decay constant of the accelerator-driven system (ADS). The cross-power spectral density between time-sequence signal data of two neutron detectors was composed of a familiar continuous reactor noise component and many delta-function-like peaks at the integral multiple of pulse repetition frequency. The prompt-neutron decay constant inferred from the reactor noise component of the cross-power spectral density was consistent with that obtained by a pulsed neutron experiment. However, the reactor noise component of the auto-power spectral density of each detector was hidden by a white chamber noise in the higher-frequency range and this feature resulted in a considerable underestimation of the decay constant. For several runs with a low pulse-repetition frequency, furthermore, we attempted to infer the decay constant from point data of the delta-function-like peaks. The analysis for a run under a slightly subcritical state resulted in the consistent decay constant; however, those for other runs under significantly subcritical states underestimated the decay constant. Considering the contribution of a spatially higher mode to the point data, the above underestimation was solved to obtain the consistent decay constant. While the Feynman-α formula for a pulsed neutron source is too complicated to be fitted directly to variance-to-mean ratio data, the present analysis on frequency domain is much simpler and the conventional formula based on the first-order reactor transfer function is available for fitting to power spectral density data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call