Abstract

To manufacture high-strength and high-performance concrete, the incorporation of silica fume with concrete was becoming popular nowadays. When utilizing various amounts of cement substitute products, the design becomes even more complicated. The latest research has been dedicated to researching the applicability of cement substitute products for cement kiln dust (CKD) and silica fume (SF). In permeability and compressive strength terms, the effect of these components on the efficacy of the concrete would be studied. Also, the materials proposed might limit greenhouse gas emissions, which will mitigate climate change on other causes of global pollution. Casting a standard concrete cube (100 percent OPC) equivalent to (150 gm) would initiate the experiment, which was utilized later for comparative purposes. The industrial waste materials (SF and CKD) was be applied as cement substitution proportions (10 percent, 20 percent, and 30 percent) of the dry cement weight at varying percentages of each component (5 percent, 10 percent, and 15 percent). Eventually, after 7, 14, 28 days, the compressive strength shift would be calculated. The permeability of the latest concrete will be checked after (7, 14, and 28) days of healing utilizing ultrasonic pulse velocity (UPV) technology. The experimental findings indicate that with a specimen comprising 20 percent of (SF and CKD) relative to (100 percent OPC) specimen, there is an improvement in compressive intensity and pulse velocity values in various curing times and specimens of various (SF and CKD) specimen M3 have a decrease in pulse velocity value after 7 curing days.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call