Abstract

The main goals of many challenges to the utilization of by-product cement kiln dusts (CKDs) as partial replacement of Portland cement (PC) environmental protection agencies are to seek ways to minimize the dual problems of disposal and health hazards of these byproducts. For many years, by-products such as fly-ash, silica fume and slag were considered as waste materials. These by-products have been successfully used in the construction industry as a portland cement substitute (Krazowski & Emery, 1981; Al-jabri et al., 2006). However, with the growing of industries the new and different types of by-products are being generated by various industries, which could have being a promising future for partial replacement of portland cement. CKDs typically fine powders that are generated during the cement manufacturing process, and then carried off in the flue gases then subsequently collected in electrostatic precipitators. The portion of CKDs that are not returned back to the cement manufacture process, or otherwise used beneficially, are placed in landfills. A limited number of studies have carried out the use of CKD as industrial wastes in fabrication of polymer composites. The effect of CKD on the compressive strength of cement paste was studied and the corrosion behavior of embedded reinforcement and observed that up to 5wt% of CKD of cement had less effect on cement paste strength and on reinforcement (El-Sayed et al., 1991). It has also reported that when CKD and blast furnace slag are added in proper ratio to ordinary cement, the compressive strength and the corrosion-resistance of the mix increase dramatically (Batis et al., 2002). It has also been reported that the use of CKD in concrete as a partial replacement of cement (Sri Ravindrarajah, 1982). The percentages of cement replacement by weight were in different percentage i.e. from 0, 25, 50, 75, and 100 in cement paste and 0, 15, 25, 35, and 45 in both 1:1.5:3 and 1:2:4 concretes. As CKD is a cementitious material and it showed good strength as compared with general cement. Therefore, particulate played a vital role in the development of commercially feasible fiber reinforced polymers. Not only they provide significant cost reductions but also certain fillers may improve processing, physical properties and improved the mechanical strength (Rothon, 2002). There are few, if any,

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call