Abstract

AbstractWe consider the model of random trees introduced by Devroye, the so‐called random split trees. The model encompasses many important randomized algorithms and data structures. We then perform supercritical Bernoulli bond‐percolation on those trees and obtain a precise weak limit theorem for the sizes of the largest clusters. We also show that the approach developed in this work may be useful for studying percolation on other classes of trees with logarithmic height, for instance, we also study the case of d‐regular trees.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.