Abstract
ABSTRACTRandom intersection graphs containing an underlying community structure are a popular choice for modeling real‐world networks. Given the group memberships, the classical random intersection graph is obtained by connecting individuals when they share at least one group. We extend this approach and make the communities dynamic by letting them alternate between an active and inactive phase. We analyse the new model, delivering results on degree distribution, local convergence, largest connected component, and maximum group size, paying particular attention to the dynamic description of these properties. We also describe the connection between our model and the bipartite configuration model, which is of independent interest.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.