Abstract

We investigate the number of permutations that occur in random node labellings of trees. This is a generalisation of the number of subpermutations occuring in a random permutation. It also generalises some recent results on the number of inversions in randomly labelled trees [Cai et al., 2017]. We consider complete binary trees as well as random split trees a large class of random trees of logarithmic height introduced by Devroye [Devroye, 1998]. Split trees consist of nodes (bags) which can contain balls and are generated by a random trickle down process of balls through the nodes. For complete binary trees we show that asymptotically the cumulants of the number of occurrences of a fixed permutation in the random node labelling have explicit formulas. Our other main theorem is to show that for a random split tree with high probability the cumulants of the number of occurrences are asymptotically an explicit parameter of the split tree. For the proof of the second theorem we show some results on the number of embeddings of digraphs into split trees which may be of independent interest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.