Abstract
In this work, we introduce the s , k - extremal coefficients for studying the tail dependence between the s -th lower and k -th upper order statistics of a normalized random vector. If its margins have tail dependence then so do their order statistics, with the strength of bivariate tail dependence decreasing as two order statistics become farther apart. Some general properties are derived for these dependence measures which can be expressed via copulas of random vectors. Its relations with other extremal dependence measures used in the literature are discussed, such as multivariate tail dependence coefficients, the coefficient η of tail dependence, coefficients based on tail dependence functions, the extremal coefficient ϵ , the multivariate extremal index and an extremal coefficient for min-stable distributions. Several examples are presented to illustrate the results, including multivariate exponential and multivariate Gumbel distributions widely used in applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.