Abstract
Recently there has been an increasing interest in applying elliptical distributions to risk management. Under weak conditions, Hult and Lindskog (2002) showed that a random vector with an elliptical distribution is in the domain of attraction of a multivariate extreme value distribution. In this paper we study two estimators for the tail dependence function, which are based on extreme value theory and the structure of an elliptical distribution, respectively. After deriving second order regular variation estimates and proving asymptotic normality for both estimators, we show that the estimator based on the structure of an elliptical distribution is better than that based on extreme value theory in terms of both asymptotic variance and optimal asymptotic mean squared error.Our theoretical results are confirmed by a simulation study.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.