Abstract
In applications tail dependence is an important property of a copula. Bivariate tail dependence is investigated in many papers, but multivariate tail dependence has not been studied widely. We define multivariate upper and lower tail dependence coefficients as limits of the probability that values of one marginal will be large if at least one of other marginals will be as large also. Further we derive some relations between introduced tail dependence and bivariate tail dependence coefficients. Applications have shown that the multivariate t-copula has been successfully used in practice because of its tail dependence property. Therefore, t-copula can be used as an alternative method for risk assessment under Solvency II for insurance models. We have paid attention to the properties of the introduced multivariate tail dependence coefficient for t-copula and examine it in the simulation experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta et Commentationes Universitatis Tartuensis de Mathematica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.