Abstract

This study is focused on the efficient estimation of the elliptical tail. Initially, we derive the density function of the spectral measure of an elliptical distribution concerning a dominating measure on the unit sphere, which consequently leads to the density function of the elliptical tail. Subsequently, we propose a maximum likelihood estimation based on the derived density function class. The resulting maximum likelihood estimator (MLE) is proven to be consistent and asymptotically normal. Moreover, it is demonstrated that the MLE is asymptotically efficient, with the added advantage that its asymptotic covariance matrix can be feasibly estimated at a low computational cost. A simulation study and real data analysis are conducted to illustrate the efficacy of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.