Abstract

Ferrimagnetic substances referred to as ferrites are ionic crystals whose chemical composition is of the form XFe2 O4 where X signifies a divalent metal. Magnetic Nano sized ferrites have found a significant potential in many applications, such as magnetic recording media, Ferro fluids and radar absorbing coating. Ferrites are widely used in many industrial applications due to their spontaneous magnetization. Soft ferrites of Mn-Zn, Ni-Zn and Mg-Mn are well known for their high magnetic permeability. In the present research work we have prepared fine Mn1-xZnxFe2O4 ferrite powder with varying x concentrations (0.25-0.75) by metal chloride precursors through a co-precipitation technique by pipette drop method using aqueous NaOH solution for comparing their spontaneous magnetization and particle size. The co-precipitation technique is a high way to produce chemically homogeneous powder with fine particle size in nanometers (22.5nm-74.5nm).The effect of x-concentration on the particle size of the Mn(1-x) Zn(x) ferrite has been discussed on the basis of XRD. The crystalline phases have been identified by X-ray diffraction with Cu-Kα radiations. The XRD patterns have verified that the specimen has spinal type structure. The observable peaks are broad since the size of the particles is small. We have concluded that at constants temperature particle size increases with increasing x-concentrations. Effect of different concentrations of x (Zn+2) on the spontaneous magnetization of different Mn(1-x) Zn(x) Fe2O4 sample is determined. We have reached the conclusion that all the samples of Mn(1-x) Zn(x) Fe2 O4 ferrites were magnetic either of low or high magnetization. The maximum spontaneous magnetization and minimum particle size is obtained at x=0.25 (at digestion temperature=65°C).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.