Abstract

2, 4-Dichlorophenol is a type of chlorophenol that, even at low concentrations, causes adverse effects such as anemia, coma, weakening of the nervous system, and cancer in humans and other organisms. Therefore, the aim of this study was to synthesize the Fe-TiO2@Fe3O4 sonocatalyst and to assess the removal efficiency of 2, 4-dichlorophenol using this sonocatalyst. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), value-stream mapping (VSM), Brunauer Emmett Teller (BET), and diffuse reflectance spectroscopy (DRS) analyses were performed for characterizing the synthesized nanoparticles. The effect of different factors, such as pH (3-9), initial concentration 2, 4-dichlorophenol (20-80mg/L), and level of nanoparticles (200-600mg/L) at different time points (15-90min), was assessed on sonocatalytic removal of 2, 4-dichlorophenol, and then the reaction kinetics, process mechanism, and stability of the synthesized nanoparticles were determined under optimal conditions. The highest removal efficiency of 2, 4-dichlorophenol and constant reaction rate was obtained at pH of 5, the initial concentration of 20mg/L, and the nanoparticles dose of 400mg/L under ultrasound with a frequency of 35kHz following the reaction time of 90min. The maximum mineralization efficiency (total organic carbon TOC) under optimal conditions was 81%. Analysis of the degradation kinetics indicated that the 2, 4-dichlorophenol degradation can follow a first-order reaction. The stability of the synthesized sonocatalyst decreased by 91% after 5 re-uses. This study confirmed the efficiency of the Fe-TiO2@Fe3O4 sonocatalytic process in the degradation and mineralization of 2, 4-dichlorophenol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call