Abstract

This research examined the photocatalytic degradation of oily pollutant, BiVO4 with efficient photocatalytic activities synthesized via hydrothermal method with its surface modified by (3- aminopropyl) triethoxysilane (APTES). The structural, morphological, and optical properties of the as synthesized samples were evaluated by X-ray powder diffraction (XRD), Scanning Electron Microscopy (SEM), Energy-dispersive X-ray spectroscopy (EDS), contact angle (CA), Thermo Gravimetric Analysis )TGA(, Fourier-transform infrared spectroscopy (FT-IR), UV-vis diffuse reflectance spectroscopy (DRS), and Analysis Brunauer–Emmett–Teller (BET). The photocatalytic efficiency of the prepared samples was evaluated by Kerosine degradation. The experiments were designed by the Box-Behnken method. Finally, the software is the best point for achieving the highest percentage of degradation of oily pollutant under optimal conditions with pollutant concentration of 436.32 (ppm), time of 2.62 (h), catalyst mass of 0.77 (g), and H2O2 concentration of 0.42 (M).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.