Abstract

The aim of this study was to evaluate the efficiency of Ag/WO3 photocatalytic process for degradation of Flumequine (FL) antibiotic from aqueous solutions. In this study, WO3 and Ag/WO3 particles were synthesized and characterized using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS)/Map, Brunauer, Emmett, Teller (BET)/Barrett, Joyner, Halenda (BJH) and UV–vis diffuse reflectance spectroscopy (DRS) techniques. The photocatalytic degradation of FL from aqueous solutions was studied by Ag/WO3 photocatalyst under sunlight irradiation. The response surface methodology (RSM) with Central Composite Design (CCD) with 4 variables was used to investigate the relationship between the obtained responses and process variables and optimize with Design Expert software. In this study, the effect of pH, time (min), photocatalyst mass (g) and FL concentration (mg/L) were evaluated at 5 levels. Finally, the software is the best point to achieve the highest degradation efficiency of FL 99.54%, in optimal conditions at pH 3.07, time 101.14 (min), photocatalyst mass 0.13 (g) and FL concentration 41.3 (mg/L).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call