Abstract

The hydrothermal treatment of a titanium plate in a mixed aqueous solution of hydrogen peroxide and aqueous phosphoric acid under different conditions results in the formation of various titanium phosphate thin films. The films have various crystal structures such as Ti2O3(H2PO4)2·2H2O, α-titanium phosphate (Ti(HPO4)2·H2O), π-titanium phosphate (Ti2O(PO4)2·H2O), or low-crystallinity titanium phosphate and different morphologies that have not been previously reported such as nanobelts, microflowers, nanosheets, nanorods, or nanoplates. The present study also suggests the mechanisms behind the formation of these thin films. The crystal structure and morphology of the titanium phosphate thin films depend strongly on the concentration of the aqueous hydrogen peroxide solution, the amount of phosphoric acid, and the reaction temperature. In particular, hydrogen peroxide plays an important role in the formation of the titanium phosphate thin films. Moreover, controllable wettability of the titanium phosphate thin films, including superhydrophilicity and superhydrophobicity, is reported. Superhydrophobic surfaces with controllable adhesion to water droplets are obtained on π-titanium phosphate nanorod thin films modified with alkylamine molecules. The adhesion force between a water droplet and the thin film depends on the alkyl chain length of the alkylamine and the duration of ultraviolet irradiation utilized for photocatalytic degradation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call