Abstract

With the exploding interest in transition metal chalcogenides, sulfide minerals containing the dianion S2(2-), such as pyrite (FeS2), cattierite (CoS2), and vaesite (NiS2), have recently attracted much attention for potential applications in energy conversion and storage devices. However, the synthesis of the patronite structure (VS4, V(4+)(S2(2-))2) and its applications have not yet been clearly demonstrated because of experimental difficulties and the existence of nonstoichiometric phases. Herein, we report the synthesis of VS4 using a simple, facile hydrothermal method with a graphene oxide (GO) template and the characterization of the resulting material. Tests of various templates such as CNT, pyrene, perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and graphite led us to the conclusion that the graphitic layer plays a role in the nucleation during growth of VS4. Furthermore, the VS4/rGO hybrid was proved to be a promising functional material in energy storage devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.