Abstract

Ribonucleic acids (RNAs) are becoming increasingly significant in our search for improved biotherapeutics. RNA-based treatments offer high specificity, targeted delivery, and potentially lower-cost options for various debilitating human diseases. Despite these benefits, there are still relatively few FDA-approved RNA-based therapies, with the notable exceptions being the mRNA (mRNA) COVID-19 vaccines, which are delivered using lipid nanoparticle (LNP) systems. LNPs are distinctive drug delivery systems (DDSs) because of their ability to target specific cells, their biocompatibility, and their efficiency in merging with cellular membranes to enhance treatment effectiveness. While the biophysical landscapes of RNA structures in solution are relatively well understood, the impact of the LNP environment on RNA remains less clear. This study uses native ion mobility-mass spectrometry (IM-MS) and collision-induced unfolding (CIU) techniques to investigate how LNP encapsulation affects RNA structure and stability. We examine how various factors, such as ionization polarity, cofactor binding, lipid types, and lipid ratios, influence LNP-released RNA cargo. Our findings reveal that LNP DDSs induce significant changes in the structures and stabilities of their RNA cargo. However, the extent of these changes strongly depends on the type and composition of the lipids used. We conclude by discussing how IM-MS and CIU can aid in the continued development of more efficient LNP DDSs and improve DDS selection methodologies overall.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.