Abstract

The development of robust and inexpensive photocatalysts for H2 production under visible light irradiation remains a significant challenge. This study presents a series of square planar copper anthraquinone complexes (R4N)CuL2 (R = ethyl, L = alizarin dianion (CuAA); R = n-butyl, L = purpurin dianion (CuPP), (2-hydroxyanthraquinone)formamide dianion (CuAHA)) as molecular photocatalysts to achieve high long-term stability in visible-light-driven H2 production. These complexes are self-sensitized by the anthraquinone ligands and serve as proton reduction photocatalysts without additional photosensitizers or catalysts. Under irradiation of blue light, complex CuAA produces H2 in a mixture of H2O/DMF with undiminished activity over 42 days, giving a turnover number exceeding 6800. Electrochemical and UV-vis studies are consistent with an EECC mechanism (E: electron transfer and C: protonation) in the catalytic cycle. The initial photochemical steps involve conversion of both anthraquinone ligands to hydroquinones. Further light-driven reductions of the hydroquinones followed by two protonation steps results in formation of H2. Dependence of the catalytic rate on the concentration of H2O suggests that either the generation of a CuII-H intermediate by protonation or heterocoupling between CuII-H and H+ to produce H2 is the turnover-limiting step in catalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.