Abstract
Since the initial MXenes were discovered in 2011, several MXene compositions constructed using combinations of various transition metals have been developed. MXenes are ideal candidates for different applications in energy conversion and storage, because of their unique and interesting characteristics, which included good electrical conductivity, hydrophilicity, and simplicity of large-scale synthesis. Herein, we study the current developments in two-dimensional (2D) MXene nanosheets for energy storage and conversion technologies. First, we discuss the introduction to energy storage and conversion devices. Later, we emphasized on 2D MXenes and some specific properties of MXenes. Subsequently, research advances in MXene-based electrode materials for energy storage such as supercapacitors and rechargeable batteries is summarized. We provide the relevant energy storage processes, common challenges, and potential approaches to an acceptable solution for 2D MXene-based energy storage. In addition, recent advances for MXenes used in energy conversion devices like solar cells, fuel cells and catalysis is also summarized. Finally, the future prospective of growing MXene-based energy conversion and storage are highlighted.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have