Abstract

A synaptic transistor emulating the biological synaptic motion is demonstrated using the memcapacitance characteristics in a Pt/HfOx/n-indium-gallium-zinc-oxide (IGZO) memcapacitor. First, the metal-oxide-semiconductor (MOS) capacitor with Pt/HfOx/n-IGZO structure exhibits analog, polarity-dependent, and reversible memcapacitance in capacitance–voltage (C–V), capacitance–time (C–t), and voltage–pulse measurements. When a positive voltage is applied repeatedly to the Pt electrode, the accumulation capacitance increases gradually and sequentially. The depletion capacitance also increases consequently. The capacitances are restored by repeatedly applying a negative voltage, confirming the reversible memcapacitance. The analog and reversible memcapacitance emulates the potentiation and depression synaptic motions. The synaptic thin-film transistor (TFT) with this memcapacitor also shows the synaptic motion with gradually increasing drain current by repeatedly applying the positive gate and drain voltages and reversibly decreasing one by applying the negative voltages, representing synaptic weight modulation. The reversible and analog conductance change in the transistor at both the voltage sweep and pulse operations is obtained through the memcapacitance and threshold voltage shift at the same time. These results demonstrate the synaptic transistor operations with a MOS memcapacitor gate stack consisting of Pt/HfOx/n-IGZO.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.