Abstract

High-efficiency photon color conversion is an approach of great potential for implementing color display. Inspired by the observation of emission enhancement in a nanoscale cavity, a novel technique to fabricate an array of color converter by mixing colloidal quantum dots (QDs) with the electrolyte of an electrochemical etching (ECE) process is demonstrated. In this process, QDs flow with the electrolyte into the etched subsurface nanoscale porous structure (PS) and settle inside. Since the PS formation and hence QD insertion are controlled by the flow path of the applied electric current in the ECE process, this technique can be used for fabricating any graphic pattern. The nanostructure of such a QD-inserted mesa is examined to confirm QD insertion. Although only single-color mesa arrays are demonstrated in this paper, this technique can be used for fabricating a multiple-color mesa array if a QD or a light-emitting nanoparticle of higher thermal stability is available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.