Abstract
AbstractThis study proposes an optimal energy management strategy for dual‐source fuel cell hybrid electric vehicles (FCHEV) utilizing the support vector machine (SVM) classifier. The goal is to optimize power distribution between fuel cells and batteries to enhance vehicle's performance and efficiency. The SVM classifier is trained using a dataset of driving conditions and corresponding optimal power distribution (OPD) values obtained through simulation. The trained classifier predicts real‐time OPD based on driving conditions. In comparison to existing literature, this study conducts a comparative analysis of energy management control strategies like model predictive control (MPC), fuzzy, equivalent consumption minimization strategy (ECMS), proportional‐integral (PI) control, and state machine control (SMC) strategy for FCHEVs using the MATLAB/SIMULINK platform and real‐world driving dataset. The proposed strategy is then tested in a real‐time EV simulator to verify its efficacy. Additionally, this study introduces the SVM classifier technique for selecting the optimal energy management strategy for FCHEVs. Performance analysis using SVM reveals that the MPC control strategy offers the highest efficiency compared to other techniques based on selected features, achieving an average performance of 95% through cross‐validation. This analysis demonstrates the most cost‐effective and fuel‐efficient utilization of electricity flow in a modern energy‐efficient environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.