Abstract

AbstractThe environmental issues impose major changes in actual technologies for vehicle manufacturers. Nowadays, further research is focused on the development technologies for the vehicles of the future. Among these technologies, the fuel cell hybrid electric vehicle (FCHEV) has an important role due to the potential to improve significantly the fuel economy. FCHEVs can be more efficient than conventional internal combustion engines being an efficient and promising perspective. The lately research was focused on different configurations of FCHEVs, especially concerning the desired hybridization level involving the specific FC and batteries rules for their interconnection. Proton exchange membrane fuel cells (PEMFCs) is regarded as promising candidates for vehicle applications, mainly due to the mature technology, which can provide electrical power with high efficiency, less noise, compactness, lightness, low operating temperature, and very low emissions compared with conventional internal combustion engines. The electric efficiency usually represents 40–60% while the output power can be changed to meet quickly demanded load. The design of the power source in the FCHEVs is extremely attractive for transport applications. The FCHEV combines the advantage offered by PEMFC with the backup system using the efficient energy management assigned by the Battery. The LiPo rechargeable battery assures a quick transfer of energy during transient responses and continuous power during the absence of reactants. In this chapter, we provide a design and energy efficiency analysis for FCHEV implemented in ICSI ENERGY Department, ICSI Rm Valcea, Romania. To ensure the required power, an energy management strategy (EMS) has been proposed. The FCHEV performance obtained in simulation using standardized load cycles is validated by taking into account a real experimental speed profile and numerical analysis of the acquired data. This EMS is focused on rule-based fuzzy logic control and state machine control. The developed FCHEV is mainly composed of PEMFC stack, LiPo rechargeable battery, and DC/AC inverter. The LiPo rechargeable battery is the main energy source, while the PEMFC plays the role of the support system. The feeding of the electric motor is assigned by the inverter which can convert the direct current (DC) in alternate current (AC). The PEMFC supplies the stationary/slow variable load, operating close to the maximum efficiency, and the battery supplies the load transients. Moreover, the PEMFC recharges the battery when is necessary, by considering the available extra energy. In order to validate the mentioned strategy, we analyzed the efficiency obtained by using the FCHEV in comparison with the efficiency using an only battery (electric vehicle). The results indicated more than 90% efficiency in the first case in comparison to 75% in the second case, respectively. The reliability of our model was tested and evaluated firstly taking into consideration various results by using of Matlab/Simulink environment. The experimental study was carried out by considering a specific protocol for the extra-urban driving cycle (EUDC). Therefore, this chapter takes into account an energy management strategy in order to analyze the efficiency obtained by using the FCHEV in comparison with efficiency by using only a battery (electric vehicle).KeywordsFuel cell hybrid electric vehicleElectric vehicleExtra urban driving cycleEnergy efficiencyNumerical analysis

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.