Abstract

With Al2O3 passivation on the surface of Cu(In,Ga)Se2, the integrated photoluminescence intensity can achieve two orders of magnitude enhancement due to the reduction of surface recombination velocity. The photoluminescence intensity increases with increasing Al2O3 thickness from 5 nm to 50 nm. The capacitance-voltage measurement indicates negative fixed charges in the film. Based on the first principles calculations, the deposition of Al2O3 can only reduce about 35% of interface defect density as compared to the unpassivated Cu(In,Ga)Se2. Therefore, the passivation effect is mainly caused by field effect where the surface carrier concentration is reduced by Coulomb repulsion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call