Abstract
ABSTRACTThis article investigates the 3D surface topography and 2D roughness profiles, and micrographs were analyzed in the abrasive water jet (AWJ) cutting of AISI D2 steel kerf wall cut surfaces by varying water jet pressures and jet impact angles. In 3D surface topography, roughness parameters such as Sq, Ssk, Sp, Sv, Sku, Sz, and Sa were improved by various jet impact angles with different water jet pressures. However, the roughness parameters Ssk and Sku strongly depend on the water jet pressure and jet impact angle. This is confirmed by kerf wall cut profile structures. Fine irregularities of peaks and valleys are found on the AWJ cut surfaces, as evident from 2D roughness profiles. The scanning electron microscope micrographs confirm the production of an upper zone not very much damaged and a lower striation free bottom zone, by using the jet impact angle of 70° with a water jet pressure of 200 MPa. Finally, the results indicate a jet impact angle of 70° maintaining the surface integrity of D2 steel better than normal jet impact angle of 90°. The results are useful in mating applications subjected to wear and friction. This has resulted in enhancement of the functionality of the AWJ machined D2 steel components.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.