Abstract

ABSTRACTThis article describes the experimental investigation of abrasive water jet (AWJ) cutting on AA5083-H32 aluminum alloy. In this study, the influence of varying the jet impingement angles and abrasive mesh sizes with different water jet pressures, on the output parameters for the AWJ cutting of the aluminum alloy, was analyzed. The experimental results found that the output parameters, namely, the depth of penetration, top kerf width, kerf taper ratio, surface roughness, and abrasive contaminations, were strongly influenced by the combined effect of oblique jet impingement angles and abrasive mesh sizes on AWJ. Also, it is noticed that oblique jet impingement angles have more influence on the output cutting responses than the normal jet impingement angle, and consequently, each abrasive mesh size has an influence on the different output responses for the AWJ cutting of AA5083-H32. Scanning electron microscope and microhardness tester were used to examine the different cutting regions of the kerf wall surfaces. The Energy-dispersive X-ray spectroscopy analysis was used to confirm the amount of silicon particles embedded in the AWJ cut surfaces. The adequacy checking of the experimental data for the AWJ cutting performance models has been analyzed through the residual plots using the statistical software.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call