Abstract

ABSTRACTIn the present experimental study, abrasive water jet (AWJ) cutting tests were conducted on D2 steel by different jet impingement angles and abrasive mesh sizes. The experimental data was statistically analyzed using the simos–grey relational method and ANOVA test. In addition, the outcome of influencing cutting parameters, namely jet pressure, jet impingement angle, and abrasive mesh size on the different response parameters, namely, the jet penetration, material removal rate, taper ratio, roughness, and topography, were studied. Micro-hardness test and surface morphology analysis were employed to examine the D2 cut surfaces at different AWJ cutting conditions. The chemical element study was performed to determine the abrasive particle contamination in the AWJ kerf wall cut surfaces. The ANOVA test result indicated the jet pressure and jet impingement angle as the influencing process parameters affecting the various performance characteristics of AWJ cutting. The overall AWJ cutting performance of the D2 steel has been improved through proper identification of the optimal process parameter settings, namely jet pressure 225 MPa, abrasive mesh size #100, and jet impingement angle 70° by the simos–grey relational analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call