Abstract

Microindentation creep tests on an electrodeposited extremely fine (4.9 nm) nanograined (ng) Ni-14.2 at.% Mo (Ni-14.2Mo) at both room temperature (RT) and liquid nitrogen temperature (LNT) demonstrated that lowering temperature retarded softening in the ng Ni-Mo alloy. The obtained strain rate sensitivity at LNT was one order of magnitude lower than that at RT. Microstructural characterization revealed that mechanically-driven grain boundary (GB) migration was greatly suppressed by lowering temperature, which might be ascribed to the presence of solute Mo atoms that significantly retarded coupled GB motion at LNT. Deformation was instead carried by shear bands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.