Abstract

Supersolid phases, in which a superfluid component coexists with conventional crystalline long range order, have recently attracted a great deal of attention in the context of both solid helium and quantum spin systems. Motivated by recent experiments on 2H-AgNiO2, we study the magnetic phase diagram of a realistic three-dimensional spin model with single-ion anisotropy and competing interactions on a layered triangular lattice, using classical Monte Carlo simulation techniques, complemented by spin-wave calculations. For parameters relevant to experiment, we find a cascade of different phases as a function of magnetic field, including three phases which are supersolids in the sense of Liu and Fisher. One of these phases is continuously connected with the collinear ground state of AgNiO2, and is accessible at relatively low values of magnetic field. The nature of this transition, and its possible observation, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.