Abstract

A short channel organic field effect transistors (OFET) based on Pentacene, having channel length in the range of sub-micrometer, has been numerically modelled for low values of drain voltage. The output characteristics show a nonlinear concave increase of drain current for all values of gate voltages. This anomalous current-voltage behavior, which resembles sub-threshold characteristics of silicon FETs, shows a good match with earlier experimental reports on OFET at low drain voltages. The sub-threshold-like characteristics has been interpreted in light of thermionic-emission model because of the presence of hole injection barrier at drain (gold)/Pentacene interface. The associated analysis has facilitated to obtain a significant parameter, effective channel thickness [Formula: see text], for the first time in case of OFETs. It came out to be roughly 4 nm and 8 nm for experimental devices of poly(3-hexylthiophene-2,5-diyl) and Pentacene, respectively, while the numerically modelled device yielded a value of about 60 nm. Increase of [Formula: see text] with transverse gate electric field is also observed. Physical explanation of the observations is also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call