Abstract

The electrical behaviors of submicrometer bottom-gate bottom-contact organic field effect transistors (OFETs) with submicrometer channel lengths and channel widths were investigated. Short-channel effects (SCEs) were observed for devices with shorter channel lengths and wider channel widths. The SCEs were effectively suppressed by reducing the channel width to 50 nm. The relationship between the drain current density and the drain voltage normalized by their respective channel lengths revealed that the drain current characteristics of shorter length channels fall into two types: parasitic contact resistances at lower drain voltage and SCEs caused by the space charge limiting current at higher drain voltages. The carrier mobility was also investigated, and found to be enhanced in the narrower channel width.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.