Abstract
Inelastic relaxation in amorphous tin oxide thin films obtained by ion-beam sputtering in an argon atmosphere were studied. The films retain an amorphous structure after annealing at temperatures below 623 K for 30 min and crystallization begins after annealing at 673 K with the formation of two phases, where the SnO2 phase predominates over the SnO phase. Annealing at 723 K for 30 min leads to a partial transition of the SnO crystalline phase to the SnO2 phase.The temperature dependence of internal friction revealed maxima at 585 K and 603 K, identified as β - relaxation maxima, as well as at 690 K, identified as α - relaxation maximum. It is assumed that the β - relaxation maxima at 585 K and 603 K are associated with local hopps of oxygen atoms within the defect structure of SnO2 and with local hopps of tin atoms within the defect structure of SnO, respectively. The exponential increase in internal friction up to a temperature of 690 K in the α - relaxation region is associated with the diffusion of nonequilibrium vacancy-like defects of the amorphous structure below the glass transition temperature and equilibrium ones above the glass transition temperature. Estimates of the migration energy and formation energy of vacancy-like defects in amorphous tin oxide were made.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.