Abstract
The nonlinear electrical characteristics of GaAs-based three-branch nanowire junction (TBJ) devices having Schottky wrap gates (WPGs) are investigated experimentally and theoretically, focusing on the nonlinear mechanism at room temperature in devices with large dimensions and the improvement of voltage transfer efficiency. Input–output voltage transfer curve, Vout–Vin, is characterized by changing nanowire width, W, temperature, T, and WPG gate voltage, VG, systematically. At room temperature, a bell-shaped Vout–Vin curve is observed even in the device having a nanowire width of 1,500 nm, which is ten times larger than the electron mean free path. With decreasing wire width or temperature, the output curves are sharpened and curvature in the low-input-voltage region increases. The curvature rapidly increases and voltage transfer efficiency, ΔVout/ΔVin, approaches unity when VG is decreased into the subthreshold region. A simple and compact model for the nonlinear characteristics in the nonballistic regime is introduced. The rapid change of the curvature and complex curve in the subthreshold region under VG control is due to the switching of the branch condition from resistive to capacitive by depletion underneath the WPG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.