Abstract
This paper presents an experimental study on heat transfer using nanofluid as coolants in engines. Previous studies shows that Al2O3 is found to be more effective in heat transfer due to its high conductive property which is found to increase with concentration. Particles having diameter in the range 10-3 to 10-6 m have low thermal conductivities and cause clogging in the flow section along with significant friction and are highly unstable in solution. Nanoparticles on the other hand are easily dispersed and cause minimal clogging or friction in the flow. In the present work, ethylene glycol-water solution is taken as a base fluid for nanoparticle dispersion. The ratio of water to ethylene glycol used is 80:20 and it has been noted out that heat conduction improved with increasing fraction of ethylene glycol. The experiments were conducted with flow rate of 4,5,6 and 7 L/min and the air flow rate inside the duct was kept constant at 4.9 m/s. The temperature of water in the reservoir is kept at 70°C. The nanoparticles used in this experiment are Cu and TiO2 having particle size less than 80nm. Result shows that there is an improvement of 24.5% in the overall heat transfer coefficient and there was also an increase of 13.9% in the heat transfer rate compared to the base fluid (80:20 Water: EG solution).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have