Abstract

Cavitation is a complex phenomenon of dynamic processes in hydraulic machines that can cause a decrease in energy performance, vibration and damage the blade surfaces. Analysis of cavitation symptoms in hydraulic machines is carried out through cavitation performance studies, namely the relations between energy parameters. Each hydraulic machine has a critical value on a different cavitation performance curve. Therefore, a study of the effect of cavitation changes is needed to determine the working zone of hydraulic machines without cavitation. In this study, cavitation performance analysis was carried out on a waterjet propulsor model with 5 impeller blades and 7 stator blades using experimental methods. The cavitation coefficient was varied at σ = 2.25 to 0.25 by setting and controlling the inlet pressure on the cavitation test rig. The critical point value will be observed at the point where the thrust coefficient decreased to 3.28%. The results showed that cavitation begins at σ = 1, the critical point is obtained at σ = 0.75. From these studies, we find that waterjet must be operated at conditions where is σ > 0.75.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.