Abstract

The steady growth in the number of drug addicts, especially among young people, dictates the need to find ways to prevent and treat this disease. In this regard, there is a need for a more detailed study of the mechanisms of the course of this disease using modern research methods, such as atomic force microscopy and fluorescence analysis of amino acid residues. Purpose of the work: to reveal the structural and functional state of erythrocyte membranes in drug addiction. Materials and methods. The studies were carried out on the erythrocyte membranes of 60 subjects suffering from heroin addiction. The shape and topography of the erythrocyte surface were studied, and spectral analysis of the proteins of the erythrocyte membranes was carried out. Results. The conducted AFM studies of erythrocyte membranes indicate the heterogeneity of the surface mechanical properties of the erythrocyte membranes of drug addicts. The data obtained indicate an acceleration of the aging process of erythrocytes in drug addiction, which goes in two ways: the formation of outgrowths on the plasmolemma, which subsequently die off (echinocytes) and invagination of the plasmolemma of erythrocytes (spherocytes). The fluorescence spectrum of amino acids in erythrocytes of drug addicts is characterized by a significant decrease in the intensity of almost all peaks and a shift of the fluorescence peak to the short-wave region. Findings. With drug addiction, changes in the structural integrity of red blood cells are noted. In people with drug addiction, in comparison with healthy people, there is a higher variability of the morphology of erythrocytes, which is expressed in a significant increase in the proportion of echinocytes and spherocytes against the background of a significant decrease in the number of discocytes. For the membrane proteins of erythrocytes of drug addicts, conformational changes are characteristic, manifested in a decrease in the intensity of fluorescence of aromatic amino acids, which indicates their structural modification and significant vulnerability of the hematopoietic system. They are largely determined by changes in the fluorescence intensity of tryptophan and, to a lesser extent, tyrosine, which indicates the preservation of the three-dimensional structure of the protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call