Abstract

This paper extends the previously developed method of optimizing Road Weather Information Systems (RWIS) station placement by unveiling a sophisticated multi-variable semivariogram model that concurrently considers multiple vital road weather variables. Previous research primarily centered on single-variable analysis focusing on road surface temperature (RST). The study bridges this oversight by introducing a framework that integrates multiple critical weather variables into the RWIS location allocation framework. This novel approach ensures balanced and equitable RWIS distribution across zones and aligns the network with areas both prone to traffic accidents and areas of high uncertainty. To demonstrate the effectiveness of this refinement, the authors applied the framework to Maine’s existing RWIS network, conducted a gap analysis through varying planning scenarios and generated optimal solutions using a heuristic optimization algorithm. The analysis identified areas that would benefit most from additional RWIS stations and guided optimal resource utilization across different road types and priority locations. A sensitivity analysis was also performed to evaluate the effect of different weightings for weather and traffic factors on the selection of optimal locations. The location solutions generated have been adopted by MaineDOT for future implementations, attesting to the model’s practicality and signifying an important advancement for more effective management of road weather conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.