Abstract
Silicon nitride stress capping layer is an industry proven technique for increasing electron mobility and drive currents in n-channel silicon MOSFETs. Herein, the strain induced by silicon nitride is firstly characterized through the changes in photoluminescence and Raman spectra of a bare bilayer MoS2 (Molybdenum disulfide). To make an analogy of the strain-gated silicon MOSFET, strain is exerted to a bilayer MoS2 field effect transistor (FET) through deposition of a silicon nitride stress liner that warps both the gate and the source-drain area. Helium plasma etched MoS2 layers for edge contacts. Current on/off ratio and other performance metrics are measured and compared as the FETs evolve from back-gated, to top-gated and finally, to strain-gated configurations. While the indirect band gap of bilayer MoS2 at 0% strain is 1.25 eV, the band gap decreases as the tensile strain increases on an average of ~100 meV per 1% tensile strain, and the decrease in band gap is mainly due to lowering the conduction band at K point. Comparing top- and strain-gated structures, we find a 58% increase in electron mobility and 46% increase in on-current magnitude, signalling a benign effect of tensile strain on the carrier transport properties of MoS2.
Highlights
Strain is a critical ingredient in modern transistor scaling
We explore on the concept of “strain-gated” MoS2 MOSFET
Strain is exerted to MoS2 channel through the deposition of a silicon nitride stress capping layer that covers the entire transistor active area, analogous to the industry-proven technique applied to the early generation of n-channel silicon transistors
Summary
Edge Contacts received: 05 May 2016 accepted: 07 December 2016 Published: 10 February 2017. Silicon nitride stress capping layer is an industry proven technique for increasing electron mobility and drive currents in n-channel silicon MOSFETs. the strain induced by silicon nitride is firstly characterized through the changes in photoluminescence and Raman spectra of a bare bilayer MoS2 (Molybdenum disulfide). To make an analogy of the strain-gated silicon MOSFET, strain is exerted to a bilayer MoS2 field effect transistor (FET) through deposition of a silicon nitride stress liner that warps both the gate and the source-drain area. For n-MOSFET, a post-salicide tensile silicon nitride capping layer was deposited on top of the transistor gate, wrapping both the gate and source drain area[7]. To enhance the field-effect mobility, uniaxial tensile strain along the transistor channel is favored to be generated in order to reduce the band gap and electron effective mass. Current on/off ratio and other performance metrics are measured as the transistors evolve from back-gated, to top-gated and strain-gated structure
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have