Abstract

This study investigates the effects of transmission losses, constraints and increased renewable energy penetration on planning energy storage allocation and investment. By modifying a DC optimal power flow model using a linearised approximation for ohmic losses, the authors were able to understand which network characteristic or inhibitor drives the most change in expanding utility-scale storage. Four different storage technologies were explored: compressed air energy storage, pumped hydro storage, lithium-ion battery and fly wheel. Each had different charging, capacity and cost characteristics. The results of the storage allocation trials revealed that network congestion was a more influential network inhibitor than were line losses. Losses only had substantial effects on a free-flowing network but produced marginal changes in allocation in congested ones. The conclusion of the investment trials revealed two things: (i) storage investment is not significantly affected by transmission constraints so long as renewable generation stays constant and relatively low; (ii) more flexible technologies like flywheels are favoured at lower volumes of renewable penetration for their load balancing capabilities while cheaper technologies are best as the volume of renewable power generated increases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.