Abstract
AbstractAccurate and reliable forecasting of wind power is essential for the stable integration of wind energy into the electrical grid. However, the chaotic nature of wind power presents a significant challenge in utilizing data for effective short‐term forecasting, such as 60‐min predictions. This article introduces a hybrid data‐driven framework that employs an ensemble deep learning model to provide highly precise short‐term wind power predictions. The framework leverages a data‐driven approach to identify the intrinsic components of wind power data, including high‐frequency and low‐frequency components. A convolutional layer‐based feature fusion network is then established to properly extract important information from irrelevant wind energy features. Subsequently, an ensemble of long short‐term memory (LSTM) networks is developed to forecast wind power using the fused features, thereby mitigating the disadvantage of a single prediction model. The numerical experiment is carried out based on two different real‐life datasets. The results demonstrate the effectiveness of the proposed method in forecasting short‐term wind power compared to five benchmarks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.