Abstract

Efficient injection of spin-polarized current into a semiconductor is a basic prerequisite for building semiconductor-based spintronic devices. Here, we use inelastic electron tunneling spectroscopy to show that the efficiency of spin-filter-type spin injectors is limited by spin scattering of the tunneling electrons. By matching the Fermi-surface shapes of the current injection source and target electrode material, spin injection efficiency can be significantly increased in epitaxial ferromagnetic insulator tunnel junctions. Our results demonstrate that not only structural but also Fermi-surface matching is important to suppress scattering processes in spintronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.