Abstract

Scientists are currently debating the effects of mixing tree species for the complementary resource acquisition in forest ecosystems. In four unmanaged old-growth spruce-beech forests in strict nature reserves in southern Sweden and northern Germany we assessed forest structure and fine rooting profiles and traits (≤2 mm) by fine root sampling and the analysis of fine root morphology and biomass. These studies were conducted in selected tree groups with four different interspecific competition perspectives: (1) spruce as a central tree, (2) spruce as competitor, (3) beech as a central tree, and (4) beech as competitor. Mean values of life fine root attributes like biomass (FRB), length (FRL), and root area index (RAI) were significantly lower for spruce than for beech in mixed stands. Vertical profiles of fine root attributes adjusted to one unit of basal area (BA) exhibited partial root system stratification when central beech is growing with spruce competitors. In this constellation, beech was able to raise its specific root length (SRL) and therefore soil exploration efficiency in the subsoil, while increasing root biomass partitioning into deeper soil layers. According to relative values of fine root attributes (rFRA), asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors. We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture. Our findings underline the need of spatially differentiated approaches to assess interspecific competition below ground. Single-tree approaches and simulations of below-ground competition are required to focus rather on microsites populated by tree specimens as the basic spatial study area.

Highlights

  • There is an on-going scientific debate about the effects of mixing tree species on forest ecosystem functioning in terms of productivity and resource acquisition

  • According to relative values of fine root attributes, asymmetric below-ground competition was observed favoring beech over spruce, in particular when central beech trees are admixed with spruce competitors

  • We conclude that beech fine rooting is facilitated in the presence of spruce by lowering competitive pressure compared to intraspecific competition whereas the competitive pressure for spruce is increased by beech admixture

Read more

Summary

Introduction

There is an on-going scientific debate about the effects of mixing tree species on forest ecosystem functioning in terms of productivity and resource acquisition. For mixed forests with European beech (Fagus sylvatica L.) and Norway spruce [Picea abies (L.) Karst], Pretzsch and Schütze (2009) have presented a thorough analysis based on material from Southern Bavaria (Germany) presenting evidence for overyielding of the mixed stands above ground and growth acceleration of Norway spruce due to niche separation. These findings are supported by the previous review of Knoke et al (2007) reporting a productivity increase compared to monospecific spruce and beech stands, and higher stability against disturbances like storms, which was previously found by Schütz et al (2006). The different habit of rooting distribution found for beech in different tree species mixtures with either an indication of root system stratification (e.g., MacQueen, 1968; Büttner and Leuschner, 1994; Hendriks and Bianchi, 1995; Rust and Savill, 2000) or none (e.g., Curt and Prévosto, 2003; Meinen et al, 2009b) is explained by the variation in growth and space occupation dynamic of beech and its competitors which may be related to their different successional status

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.