Abstract

We investigated the biomass, vertical distribution, and specific root length (SRL) of fine and small roots in a chronosequence of Japanese cedar (Cryptomeria japonica D. Don) plantations in Nara Prefecture, central Japan. Roots were collected from soil blocks up to 50 cm in depth in five plantations of differing age: 4, 15, 30, 41, and 88 years old. Fine-root biomass reached a maximum (639 gm−2) in the 15-year-old stand before canopy closure, decreased in the 30-year-old stand (422 gm−2), and thereafter was stable. Except in the 30-year-old stand, fine-root biomass increased in deeper soil layers as stand age increased, and the depth at which the cumulative biomass of fine roots reached 90% exhibited a good allometric relationship with mean stem diameter. Both root-length density (root length per unit soil volume) and SRL decreased with soil depth in all stands, indicating that plants mainly acquire water and nutrients from shallow soils. The highest SRL was observed in the 4-year-old stand, but the relationship between SRL and stand age was unclear in older stands. The SRL in surface soils seemed to decrease with increases in root-length density, suggesting that branching of the fine-root system during development is related to density-dependent processes rather than age.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call