Abstract

The metal-phthalocyanine coordination complexes can absorb visible light with great efficiency. Besides, these compounds have prolific catalytic activity in multiple reactions e.g. electron and/or energy transfer reactions. The singlet oxygen production quantum yield (FD) is an important physical property in photochemistry filed to develop practical applications as sensitizers for medical and environmental treatments. In this work, we determined theorical and experimental photophysical properties of both zinc and copper tetracarboxylic-phthalocyanines named TcPcZn) and TcPcCu respectively. The FD was determined by using the chemical trapping method with rubrene, besides, we determined both the optimized structures of the phthalocyanines and the reactivity of the compounds thorough out set of global reactivity descriptors for using the conceptual density functional theory (DFT). The calculated electronic properties of TcPcCu and TcPcZn provide HOMO-LUMO energy gap of 2.14 and 2.15 eV respectively, furthermore, the TcPcCu and TcPcZn where a planar conformation of the macrocycles with metallic centers. Finally, photophysical characterization show a FD value for TcPcZn of 0.37 and 0.25 for the TcPcCu indicating compounds are suitable as sensitizers for photochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call