Abstract

Mirror neurons, which fire during both the execution and observation of movement, are believed to play an important role in motor processing and learning. However, much work still remains to understand the similarities and differences in how these neurons compute in the motor cortex during movement execution and observation. Here, we performed experiments where a monkey both executes and observes a center-out-and-back task within the same experimental session. By recording from putatively the same neural population, we were able to analyze and compare single neuron statistics between movement execution and observation. We found that a majority of neurons in the primary motor cortex (M1) and dorsal premotor cortex (PMd) have statistically different firing rate statistics between movement execution and observation. As a result of this difference, we then wondered if neurons during movement observation exhibited a similar characteristic to those during movement execution: changing of preferred directions as a function of movement speed. Interestingly, we found that while observed movement speed is encoded in the neural population, it only alters a small proportion of the neuron's firing rate statistics. These results suggest that neural populations in Ml and PMd process information related to movement differently between execution and observation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.