Abstract
Metal implants are one of the culprits for image quality degradation in CT imaging, introducing so-called metal artifacts. With the help of the virtual-monochromatic imaging technique, dual-energy CT has been proven to be effective in metal artifact reduction. However, the virtual monochromatic images with suppressed metal artifacts show reduced CNR compared to polychromatic images. To remove metal artifacts on polychromatic images, we propose a dual-energy NMAR (deNMAR) algorithm in this paper that adds material decomposition to the widely used NMAR framework. The dual energy sinograms are first decomposed into water and bone sinograms, and metal regions are replaced with water on the reconstructed material maps. Prior sinograms are constructed by polyenergetically forward projecting the material maps with corresponding spectra, and they are used to guide metal trace interpolation in the same way as in the NMAR algorithm. We performed experiments on authentic human body phantoms, and the results show that the proposed deNMAR algorithm achieves better performance in tissue restoration compared to other compelling methods. Tissue boundaries become clear around metal implants, and CNR rises to 2.58 from ~1.70 on 80 kV images compared to other dual-energy-based algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.