Abstract

Research on rare-earth hexaborides mainly focuses on tuning their electronic structure from insulating-to-metallic states during high pressure experiments. However, the structural evolution that contributes to their mechanical failure is not well understood. Here, we examine the pressure-induced structural evolution of a model rare-earth hexaboride, EuB6, during nanoindentation. Transmission electron microscopy reveals that nanoscale amorphous shear bands, mediated by dislocations, play a decisive role in deformation failure. Density functional theory calculations confirm that amorphous bands evolve by breaking boron-boron bonds within B6 octahedra during shear deformation. Our results underscore an important damage mechanism in hard and fragile hexaborides at high shear pressures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.