Abstract

Recently, SmCo5 was found to be capable of forming amorphous shear bands to induce dislocation-free plastic deformation at large strains. The formation of shear band is energetically more favorable compared to cracking and the small density variation in shear bands is not likely to induce high local stress that assists crack opening. However, the related mechanism of crystalline-to-amorphous transition during shear-band formation at the atomic level remains unclear. In this paper, the shear deformation of SmCo5 is investigated by molecular dynamics simulations and we discuss the behavior of shear-band formation by exploring the atomic packing in the interfacial zone between crystal matrix and shear band. The stress-strain curves of SmCo5 show anisotropy with respect to formation of amorphous shear band. The analysis of atomic packing indicates that the behavior of Sm is critical to the atomistic amorphization path and thus accounts for the mechanical anisotropy of the material. Temperature calculations show that the material is not subject to shear melting during deformation that would otherwise lead to embrittlement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.