Abstract
Boron carbide is super-strong and has many important engineering applications such as body armor and cutting tools. However, the extended applications of boron carbide have been limited by its low fracture toughness arising from anomalous brittle failure when subjected to hypervelocity impact or under high pressure. This abnormal brittle failure is directly related to the formation of a tiny amorphous shear band of 2–3 nm in width and several hundred nm in length. In this Perspective, we discuss mitigating the amorphous shear bands in boron carbide from various strategies including microalloying, grain boundary engineering, stoichiometry control, and the addition of a second phase. Combined with recent theoretical and experimental studies, we discuss strategies that can be applied in synthesizing and producing boron carbide-based materials with improved ductility by suppressing the formation of the amorphous shear band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.