Abstract

In this work, we present a disciplinary e-tutoring system that integrates ONTO-TDM, an ontology designed for teaching domain modeling, with advanced transformer technology. Our primary objective is to enhance semantic similarity tasks within the system by fine-tuning a Sentence Transformer model. By carefully adjusting training parameters with a curated dataset of question-answer pairs focused on algorithms and data structures, we achieved a notable improvement in system performance. The Sentence Transformer model, combined with domain ontology, achieved an accuracy of 91%, a precision of 93%, a recall of 89%, and an F1-score of 90%, significantly surpassing the results of existing works. This methodology highlights the potential to deliver personalized support and guidance in tutoring scenarios. It effectively addresses the evolving needs of modern education by offering tailored answers and reducing the necessity for constant learner-tutor interaction, thereby improving the efficiency of educational support systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.